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Abstract. Influence maximization is a widely used model for information dis-
semination in social networks. Recent work has employed such interventions
across a wide range of social problems, spanning public health, substance abuse,
and international development (to name a few examples). A critical but under-
studied question is whether the benefits of such interventions are fairly distributed
across different groups in the population; e.g., avoiding discrimination with re-
spect to sensitive attributes such as race or gender. Drawing on legal and game-
theoretic concepts, we introduce formal definitions of fairness in influence max-
imization. We provide an algorithmic framework to find solutions which satisfy
fairness constraints, and in the process improve the state of the art for general
multi-objective submodular maximization problems. Experimental results on real
data from an HIV prevention intervention for homeless youth show that standard
influence maximization techniques oftentimes neglect smaller groups which con-
tribute less to overall utility, resulting in a disparity which our proposed algo-
rithms substantially reduce.

Keywords: Influence Maximization · Fair Allocation.

1 Introduction

Influence maximization in social networks is a well-studied problem with applications
in a broad range of domains. Consider, for example, a group of at-risk youth; outreach
programs try to provide as many people as possible with useful information (e.g., HIV
safety, or available health services). Since resources (e.g., social workers) are limited, it
is not possible to personally reach every at-risk individual. It is thus important to target
key community figures who are likely to spread vital information to others. Formally,
individuals are nodes V in a social network, and we would like to influence or activate
as many of them as possible. This can be done by initially seeding k nodes (where
k � |V |). The seed nodes activate their neighbors with some probability, who activate
their neighbors and so forth. Our goal is to identify k seeds such that the maximal
number of nodes is activated. This is the classic influence maximization problem [13],
that has received much attention in the literature.

In recent years, the influence maximization framework has seen application to many
social problems, such as HIV prevention for homeless youth [28,25], public health
awareness [23], financial inclusion [2], and more. Frequently, small and marginalized
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groups within a larger community are those who benefit the most from attention and
assistance. It is important, then, to ensure that the allocation of resources reflects and
respects the diverse composition of our communities, and that each group receives a fair
allocation of the community’s resources. For instance, in the HIV prevention domain
we may wish to ensure that members of racial minorities or of LGBTQ identity are not
disproportionately excluded; this is where our work comes in.

Our Contributions: This paper introduces the problem of fair resource allocation in
influence maximization. Our first contribution is to propose fairness concepts for in-
fluence maximization. We start with a maximin concept inspired by the legal notion of
disparate impact; formally it requires us to maximize the minimum fraction of nodes
within each group that are influenced. While intuitive and well-motivated, this defi-
nition suffers from shortcomings that lead us to introduce a second concept, diversity
constraints. Roughly, diversity constraints guarantee that every group receives influence
commensurate with its “demand”, i.e., what it could have generated on its own, based
on a number of seeds proportional to its size. Here, to compute a group’s demand, we
allow it a number of seeds proportional to its size, but require that it spreads influence
using only nodes in the group. Hence, a small but well connected group may have a
better claim for influence than a large but sparsely connected group.

Our second contribution is an algorithmic framework for finding solutions that sat-
isfy either fairness concept. While the classical influence maximization problem is sub-
modular (and hence easily solved with a greedy algorithm), fairness considerations pro-
duce strongly non-submodular objectives. This renders standard techniques inapplica-
ble. We show that both fairness concepts can be reduced to multi-objective submod-
ular optimization problems, which are substantially more complex. Our key algorith-
mic contribution is a new method for general multi-objective submodular optimization
which has substantially better approximation guarantee than the current best algorithm
[22], and often better runtime as well. This result may be of independent interest.

Our third contribution is an analytical exploration of the price of group fairness in
influence maximization, i.e., the reduction in social welfare with respect to the uncon-
strained influence maximization problem due to imposing a fairness concept. We show
that the price of diversity can be high in general for both concepts and under a range of
settings.

Our fourth contribution is an empirical study on real-world social networks that
have been used for a socially critical application: HIV prevention for homeless youth.
Our results show that standard influence maximization techniques often cause substan-
tial fairness violations by neglecting small groups. Our proposed algorithm substantially
reduces such violations at relatively small cost to overall utility.

Related Work: Kempe et al. [13] introduced influence maximization and proved that
since the objective is submodular, greedily selecting nodes gives a

(
1− 1

e

)
-optimal

solution. There has since been substantial interest among the AI community both in
developing more scalable algorithms (see [15] for a recent survey) , as well as in ad-
dressing the challenges of deployment in public health settings [27,24]. Recently, such
algorithms have been used in real-world pilot tests for HIV prevention amongst home-
less youth [28,25], driving home the need to consider fairness as influence maximization
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is applied in socially sensitive domains. To our knowledge, no previous work considers
fairness specifically for influence maximization. The techniques we introduce to opti-
mize fairness metrics are related to research on multi-objective submodular maximiza-
tion (outside the context of fairness), and we improve existing theoretical guarantees
for this general problem [7,22].

Outside of influence maximization, the general idea of diversity as an optimization
constraint has received considerable attention in recent years; it has been studied in mul-
tiwinner elections (see [6,10] for an overview), resource allocation [5], and matching
problems [1,11]. We note that some of the above works (e.g. [1] and [18]) use a submod-
ular objective function as a means of achieving diversity; interestingly, while the classic
influence maximization target function is submodular, it is no longer so under diversity
constraints. Group fairness has been studied extensively in the voting theory literature,
where the objective is to identify a committee of k candidates that will satisfy subsets
of voters (see a comprehensive overview in [10]). There have also been several works
on group fairness in fair division, defining notions of group envy-freeness [8,9,19,21],
and a group maximin share guarantee [3,20].

2 Model

Agents are embedded in a social network G = (V,E). An edge (i, j) ∈ E represents
the ability for agent vi to influence or activate vj . G may be undirected or directed.

Diversity: Each agent in our network may identify with one or more groups within the
larger population. These represent different ethnicities, genders, sexual orientations, or
other groups for which fair treatment is important. Our goal is to maximize influence
in a way such that each group receives at least a “fair” share of influence (more on this
below). Let us designate these groups as C = {C1, . . . Cm}. Each groupCi represents a
non-empty subset of V, ∅ 6= Ci ⊆ V . Each agent must belong to at least one group, but
may belong to multiple groups; i.e. C1∪C2∪ . . . Cm = V . In particular, this allows for
the expression of intersectionality, where an individual may be part of several minority
groups.

Influence maximization: We model influence using the independent cascade model
[13], the most common model in the literature. All nodes begin in the inactive state. The
decision maker then selects k seed nodes to activate. Each node that is activated makes
one attempt to activate each of its inactive neighbors; each attempt succeeds indepen-
dently with probability p. Newly activated nodes attempt to activate their neighbors and
so on, with the process terminating once there are no new activations.

We define the influence of nodes A ⊆ V , denoted IG(A), as the expected number
of nodes activated by seeding A. Of these, let IG,Ci(A) be the expected number of
activated vertices from Ci. Traditional influence maximization seeks a set A, |A| ≤ k,
maximizing IG(A). Using a slight abuse of notation, let IG(k) be the maximum influ-
ence that can be achieved by selected k seed nodes. That is, IG(k) = max|A|=k IG(A).
Analogously, we define IG,Ci(k) as the maximum expected number of vertices from
Ci that can be activated by k seeds. We now propose two means of capturing group
fairness in influence maximization.
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Maximin Fairness: Maximin Fairness captures the straightforward goal of improving
the conditions for the least well-off groups. That is, we want to maximize the minimum
influence received by any of the groups, as proportional to their population. This leads
to the following utility function:

UMaximin(A) = min
i

IG,Ci(A)
|Ci|

Subject to this maximin constraint, we seek to maximize overall influence. Thus,
we define IMaximin

G = IG(B) with B = argmaxA⊆V,|A|=k U
Maximin(A). That is,

IMaximin
G is the expected number of nodes activated by a seed configuration that max-

imizes the minimum proportional influence received by any group. This corresponds
to the legal concept of disparate impact, which roughly states that a group has been
unfairly treated if their “success rate” under a policy is substantially worse than other
groups (see [4] for an overview). Therefore, maximin fairness may be significant to
governmental or community organizations which are constrained to avoid this form
of disparity. However, optimizing for equality of outcomes may be undesirable when
some groups are simply much better suited than others to a network intervention. For
instance, if one group is very poorly connected, maximin fairness would require that
large number of nodes be spent trying to reach this group, even though additional seeds
have relatively small impact.

Diversity Constraints: We now propose an alternate fairness concept by extending the
notion of individual rationality to Group Rationality. The key idea is that no group
should be better off by leaving the (influence maximization) game with their propor-
tional allocation of resources and allocating them internally. For each group Ci, let
ki = dk|Ci|/|V |e be the number of seeds that would be fairly allocated to the group Ci
based on the group’s size within the larger population, rounded up to remove any doubt
that this group receives a fair share. ki is the fair allocation of seeds to the group.

Let G[Ci] be the subgraph induced from G by the nodes Ci. This represents the
network formed by group Ci if they were to separate from the original network. Now,
we define the group rational influence that each group Ci can expect to receive as the
number of nodes they expect to activate if they left the network, with their fair allocation
of ki seeds. We denote this group rational influence for Ci as IG[Ci](ki). Then, we
devise a set of diversity constraints that any group rational seeding configuration A
with k seeds must satisfy: IG,Ci(A) ≥ IG[Ci](ki),∀i. That is, the influence received
by each group is at least equal to what each group may accomplish on its own when
given its fair share of ki seed nodes.

The diversity constraint objective function is to maximize the expected number of
nodes activated, subject to the above diversity constraint. The utility for selecting seed
nodes A is:

URational(A) =

{
IG(A), if IG,Ci(A) ≥ IG[Ci](ki),∀i.
0, otherwise.

The maximum expected influence obtained via a group rational seeding configura-
tionA is called the rational influence IRational

G = IG(B), whereB = argmaxA⊆V,|A|=k U
Rational(A).
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Price of Fairness: To measure the cost of ensuring a fair outcome for the diverse
population, we will measure the Price of Fairness, the ratio of optimal influence to
the best achievable influence under our two fairness criteria. Here optimal influence
IOPT
G = IG(k), which is the maximum amount of expected influence that can be

obtained using any choice of k seed nodes. We omit the subscript where the context is
clear.

PoFRational =
IOPT

IRational
PoFMaximin =

IOPT

IMaximin

3 Optimization

The standard approach to influence maximization is based on submodularity. Formally,
a set function f on ground set V is submodular if for everyA ⊆ B ⊆ V and x ∈ V \B,
f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). This captures the intuition that additional
seeds provide diminishing returns. However, both of our fairness concepts are easily
shown to violate this property (proofs are deferred to the appendix)3:

Theorem 1. UMaximin and URational are not submodular.

Hence, we cannot apply the greedy heuristic to group-fair influence maximization.
However, we now show that optimizing either utility function reduces to multiobjective
submodular maximization, for which we we give an improved algorithm below. Con-
sider the following generic problem: given monotone submodular functions f1...fm and
corresponding target values W1...Wm, find a set S satisfying |S| ≤ k with fi(S) ≥Wi

for all i (under the promise that such an S exists). Roughly, fi will be group i’s util-
ity, and Wi will be the utility that we want to guarantee for i. Suppose that we have
an algorithm for the above multiobjective problem. Then, we can optimize the max-
imin objective by letting fi =

IG,Ci
|Ci| and binary searching for the largest W such that

fi ≥ W is feasible for all groups i. For diversity constraints, we let fi = IG,Ci and set
the target Wi = IG[Ci](ki). We then add another objective function ftotal = IG repre-
senting the combined utility and binary search for the highest value Wtotal such that the
targets W1...Wm,Wtotal are feasible. This represents the largest achievable total utility,
subject to diversity constraints. Having reduced both fairness concepts to multiobjective
submodular maximization, we now give an improved algorithm for this core problem.

The multiobjective submodular problem was introduced by Chekuri et al. [7], who
gave an algorithm which guarantees fi ≥ (1 − 1

e )Wi for all i provided that the num-
ber of objectives m is smaller than the budget k (when m = Ω(k), the problem is
provably inapproximable [14]). Unfortunately, this algorithm is of mostly theoretical
interest since it runs in time O(n8). Udwani [22] recently introduced a practically ef-
ficient algorithm; however it obtains an asymptotic (1 − 1

e )
2-approximation instead of

the optimal
(
1− 1

e

)
. We remedy this gap by providing a practical algorithm obtaining

an asymptotic
(
1− 1

e

)
-approximation (Algorithm 1). Its runtime is comparable to, and

under many conditions faster than, the algorithm of [22]. We present the high-level idea
behind the algorithm here, with additional details present in the appendix.

3 https://www.dropbox.com/s/5egb2wpl1gce7h5/appendix fairness.pdf?dl=0

https://www.dropbox.com/s/5egb2wpl1gce7h5/appendix_fairness.pdf?dl=0
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Previous algorithms [7,22] start from a common template in submodular optimiza-
tion, which we also build on. The main idea is to relax the discrete problem to a contin-
uous space. For a given submodular function f , its multilinear extension F is defined
on n-dimensional vectors x where 0 ≤ xj ≤ 1 for all j. xj represents the probability
that item j is included in the set. Formally, let S ∼ x denote a set which includes each
j independently with probability xj . Then, we define F (x) = ES∼x[f(S)], which can
be evaluated using random samples.

The main challenge is to solve the continuous optimization problem, which is where
our technical contribution lies. Algorithm 1 describes the high-level procedure, which
runs our continuous optimization subroutine (line 2) and then rounds the output to a
discrete set (line 3). Line 1, which ensures that all items with value above a threshold τ
are included in the solution, is a technical detail needed to ensure the rounding succeeds.
The rounding process captured in lines 1 and 3 is fairly standard and used by both
previous algorithms [7,22]. Our main novelty lies in an improved algorithm for the
continuous problem, MULTIFW.

Algorithm 1 Multiobjective Optimization(γ, τ, T, T ′, η)

1: S1 = {j : fi({j}) ≥ τ for some i}
2: x =MULTIFW(k − |S1|, {γ (Wi − fi(S))}mi=1)
3: S2 =SWAPROUND(xint) //see [7]
4: return S1 ∪ S2

Algorithm 2 Multiobjective Frank-Wolfe(k, {Wi})
1: x0 = 0
2: for t = 1...T do
3: vt = S-SP-MD(x, {i :Wi − Fi(x

t−1) ≥ ε})
4: xt = xt−1 + 1

T
vt

5: return APPROXDECOMPOSITION(xT ) //see [16]
6: function S-SP-MD(x, I)
7: Initialize v s.t. ||v||1 = k and y ∈ ∆(I) arbitrarily
8: for ` = 1...T ′ do
9: Sample i ∼ y; set ∇̂v = 1

Wi−Fi(x)
Ai

grad(x)

10: Sample j ∼ v; ∇̂y = k · diag
(

1
W−F (x)

)
Aj

item(x)

11: y = ye−η∇̂y

||ye−η∇̂y ||1

12: v = k
min{veη∇̂v ,1}

||min{veη∇̂v ,1}||1

MULTIFW implements a Frank-Wolfe style algorithm to simultaneously optimize
the multilinear extensions F1...Fm of the discrete objectives. The algorithm proceeds
over T iterations. Each iteration first identifies vt, a good feasible point in continuous
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space (Algorithm 2, line 3). Then, the current solution xt is updated to add 1
T v

t (line 4).
The final output is an approximate decomposition of xT into integral points, produced
using the algorithm of [16]. This is a technical step required for the rounding procedure.

The key challenge is to efficiently find a vt that makes sufficient progress towards
every objective simultaneously. We accomplish this by introducing the subroutine S-
SP-MD (lines 6-12), which runs a carefully constructed version of stochastic saddle-
point mirror descent [17]. The idea is to find a v for which v · ∇iFi(xt−1) is large
enough for all objectives i. We convert this into the saddle point problem of maximizing
mini∈I v · ∇iFi(xt−1). I denotes the set of objectives i where Wi − Fi(xt−1) ≥ ε
(i.e., those where we still need to make progress). We let ∆(I) denote the set of all
distributions over i. Our approach only requires stochastic gradients, a necessary feature
since computing ∇iF (xt−1) exactly may be intractable when the objective itself is
randomized (as in influence maximization).

Specifically, we assume access to two gradient oracles. First, a stochastic gradi-
ent oracle Aigrad for each multilinear extension Fi. Given a point x, Aigrad(x) satis-
fies E[Aigrad] = ∇xFi(x). Second, a stochastic gradient oracle Ajitem corresponding
to each item j ∈ [n] (in influence maximization, the items are the potential seed
nodes). Ajitem(x) satisfies E[Ajitem(x)] =

[
∇xjF1(x)...∇xjFm(x)

]
. We assume that

||Aigrad(x)||∞, ||A
j
item(x)||∞ ≤ c for some constant c. Linear-time oracles are available

for many common submodular maximization problems (e.g., coverage functions and
facility location [12]). Given such oracles, we implement a stochastic mirror descent
algorithm for the maximin problem. We can interpret the algorithm as solving a game
between the max player and the min player. The max player controls v, while the min
player controls a variable y representing the weight put on each objective. Intuitively,
the min player will put large weights where the max player is doing badly, forcing the
max player to improve v. Formally, in each iteration, the players take exponentiated
gradient updates (lines 8-12). The max player obtains a stochastic gradient by sampling
an objective with probability proportional to the current weights y, while the min player
samples an item proportional to v and uses that item’s contribution to estimate the max
player’s current performance on each objective. We prove that these updates converge
rapidly to the optimal v. With the subroutine in hand, our main algorithmic result is the
following guarantee for Algorithm 1. Here, b = maxi,j fi({j}) is the maximum value
of a single item.

Theorem 2. Given a feasible set of target values W1...Wn, Algorithm 1 outputs a set
S such that fi(S) ≥ (1 − ε)

(
1− m

k(1+ε′)ε3

) (
1− 1

e

)
Wi − ε with probability at least

1−δ. Asymptotically as k →∞, the approximation ratio can be set to approach 1−1/e
so long as m = o(k log3 k). The algorithm requires O(nm) ε′-accurate value oracle

calls, O(m bk2

ε log 1
δ ) ε-accurate value oracle calls, O

(
bk4c2

ε5 log
(
n+ bk

δε

))
calls to

Agrad and Aitem, and O
(
nk2b2

ε2 + mk2b
ε + k3b2

ε2

)
additional work.

This says that Algorithm 1 asymptotically converges to a
(
1− 1

e

)
-approximation

when the budget k is larger than the number of objectives m (i.e., the conditions under
which the problem is approximable). All terms in the approximation ratio are identical
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to Udwani [22], except that we improve their factor
(
1− 1

e

)2
to
(
1− 1

e

)
. The runtime

is also identical apart from the time to solve the continuous problem (MULTIFW vs
their corresponding subroutine). This is difficult to compare since our respective al-
gorithms use different oracles to access the functions. However, both kinds of oracles
can typically be (approximately) implemented in time O(n). Udwani’s algorithm uses
O(n) oracle calls, while our’s requiresO(bk4c2 log n). For large-scale problems, n typ-
ically grows much faster than k, b, and c (all of which are often constants, or near-so).
Hence, trading O(n2) runtime for O(n log n) can represent a substantial improvement.
We present a more detailed discussion in the appendix.

To instantiate Algorithm 1 for influence maximization, we just need to supply ap-
propriate stochastic gradient oracles. To our knowledge, no such oracles were previ-
ously known for influence maximization, which is substantially more complicated than
other submodular problems because of additional randomness in the objective; naive
extensions of previous methods require O(n2) time. We provide efficient O(kn log n)
time stochastic gradient oracles by introducing a randomized method to simultaneously
estimate many entries of the gradient at once (details may be found in the appendix).

4 Price of Fairness

In this section, we show that both definitions for the Price of Fairness can be unbounded;
moreover, allowing nodes to join multiple groups can, counter-intuitively, worsen the
PoF. The proofs in this section use undirected graphs. As they are more restrictive, the
result naturally hold for directed graphs.

Theorem 3. As n→∞ and p→ 0, PoFRational →∞.

Proof. We construct a graph G with two parts. In Part L, we have s − 1 vertices all
disjoint except for two vertices; label one of these x3. In Part S, we have a star with
s+ 1 nodes. Label a leaf node x1 and the central node x2. We define two groups: C1 is
comprised of the s degree-1 vertices of S, and C2 for the remaining s vertices, which
includes the vertices of L and the central vertex x2 of the star. There are k = 2 seeds,
and since |C1| = |C2|, they each have a fair allocation of k1 = k2 = 1 seeds. The figure
below illustrates this network.

Since the subgraph induced by C1 is comprised of
isolated vertices, they have a rational allocation of
IG[C1](1) = 1. The subgraph induced by C2 is a col-
lection of isolated vertices and a K2, its rational allo-
cation is IG[C2](1) = 1 + p.

We are interested in two seeding configurations: A = {x1, x3} and B = {x2, x3}.
We can verify that configuration A is fair. The A activates 1 + p nodes in Part L, and
1 + p+ (s− 1)p2 in Part S, for a total of IG(A) = 2 + 2p+ (s− 1)p2.
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Now consider configuration B. C1 receives ps influence, and since p < 2
n = 1

s ,
C1 does not receive its group rational share of influence. However, we can verify that
this seeding is optimal. Part L receives (1 + p) influence, and Part S receives 1 + ps.
Therefore, IG(B) = 2 + p+ ps.

We may then calculate our Price of Fairness:

PoFRational =
IOPT
G

IRational
G

=
2 + p+ ps

2 + 2p+ (s− 1)p2

And if we take the limit as n → ∞, s → ∞, PoF → 1/p. Finally, as as p → 0,
PoF →∞.

The appendix details a similar result for Maximin Fairness:

Theorem 4. PoFMaximin is unbounded.

Frequently, an individual may identify with multiple groups. Intuitively, we might
expect such multi-group membership to improve the influence received by different
groups and make the group-fairness easier to achieve (see the appendix for an example).
However, in this section, we show that this is not always true, and giving even a single
node membership in a second group can cause the Price of Fairness to worsen by an
arbitrarily large amount.

Theorem 5. Given graphs G with groups C1 and C2, and G′ with groups C ′1 and C ′2,
where G′ = G, C ′1 = C1 and C ′2 is obtained from C2 by the addition of one vertex x1
(x1 ∈ C1, x1 /∈ C2). It is possible for lim

n→∞
PoFRational

G′

PoFRational
G

=∞.

Proof. Consider a graphGwith two components: one componentK contains 2 vertices
joint by an edge, the other component S is a star with s + 1 vertices (s ≥ 1/p). There
are two groups: C1 contains all degree-1 vertices from S and one vertex from K; C2

contains the other vertex x1 fromK and the central vertex x2 from S. There is one seed
(k = 1), and the fair allocation of seeds to each group is k1 = k2 = 1.

G with Disjoint Groups. G′ with Overlapping Groups.

Since the induced subgraphs for both groups comprise only of isolated nodes, the
group rational influence for each group is IG[C1] = IG[C2] = 1. Therefore, the seed set
{x2} is both fair and optimal, giving an expected influence of IG({x2}) = 1 + ps.
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Fig. 1: Average performance on homeless youth social networks (top) and simulated Antelope
Valley networks (bottom).

Now, let us modify G by letting x1 belong to both communities to obtain G′, and
communities C ′1 and C ′2. The group rational influence for C ′2 remains the same (its
members have not changed) but IG′[C′1] has increased to 1 + p (by seeding x1). In
fact, this forces the fair allocation to seed x1 instead of x2, for a fair influence of
IG′({x1}) = 1 + p.

As n→∞, lim
n→∞

PoFRational
G′

PoFRational
G

= lim
s→∞

1+ps
1+p =∞.

A more technical construction can demonstrate a similar result for Maximin Fair-
ness, but only as p → 1

3

−; that is, p < 1
3 as p approaches 1

3 . The proof is provided in
the appendix.

Theorem 6. Given graphs G with groups C1 and C2, and G′ with groups C ′1 and C ′2,
where G′ = G C ′1 = C1 and C ′2 is obtained from C2 by the addition of one vertex x1
(x1 ∈ C1, x1 /∈ C2). It is possible for lim

n→∞
p→ 1

3
−

PoFMaximin
G′

PoFMaximin
G

→∞.
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5 Experimental results

We now investigate the empirical impact of considering fairness in influence maximiza-
tion. We start with experiments on a set of four real-world social networks which have
been previously used for a socially critical application: HIV prevention for homeless
youth. Each network has 60-70 nodes, and represents the real-world social connections
between a set of homeless youth surveyed in a major US city. Each node in the network
is associated with demographic information: their birth sex, gender identity, race, and
sexual orientation. Each demographic attribute gives a partition of the network into any-
where from 2 to 6 different groups. For each partition, we compare three algorithms:
the standard greedy algorithm for influence maximization, which maximizes the total
expected influence (Greedy), Algorithm 1 used to enforce diversity constraints (DC),
and Algorithm 1 used to find a maximin fair solution (Maximin). We set the propaga-
tion probability to be p = 0.1 and fixed k = 15 seeds (varying these parameters had
little impact). We average over 30 runs of the algorithms on each network (since all of
the algorithms use random simulations of influence propagation), with error bars giving
bootstrapped 95% confidence intervals.

Figure 1 (top) shows that the choice of solution concept has a substantial impact on
the results. For the diversity constraints case, we summarize the performance of each
algorithm by the mean percentage violation of the constraints over all groups. For the
maximin case, we directly report the minimum fraction influenced over all groups. We
see that greedy generates substantial unfairness according to either metric: it generates
the highest violations of diversity constraints, and has the smallest minimum fraction
influenced. Greedy actually obtains near-zero maximin value with respect to sexual
orientation. This results from it assigning one seed to a minority group in a single run
and zero in others.

DC performs well across the board: it reduces constraint violations by approxi-
mately 55-65% while also performing competitively with respect to the maximin metric
(even without explicitly optimizing for it). As expected, the Maximin algorithm gener-
ally obtains the best maximin value. DC actually attains slightly better maximin value
for one attribute (birthsex); however, the difference is within the confidence intervals
and reflects slight fluctuations in the approximation quality of the algorithms. However,
Maximin performs surprisingly poorly with respect to diversity constraint violations.
This indicates that optimizing exclusively for equal influence spread may force the al-
gorithm to focus on poorly connected groups which exhibit severe diminishing returns.
DC is able to attain almost as much influence in such groups but is then permitted to
focus its remaining budget for higher impact. Interestingly, the price of fairness is rel-
atively small for both solution concepts, in the range 1.05-1.15 (though it is higher for
maximin than for DC). This indicates that while standard influence maximization tech-
niques can introduce substantial fairness violations, mitigating such violations may be
substantially less costly in real world networks than the theoretical worst case would
suggest.

Finally, the rightmost plot in the top row of Figure 1 explores an example with
overlapping groups. Specifically, we consider the race and birthsex attributes so that
each node belongs to two groups. Constraint violations are somewhat higher than for
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either attribute individually, but the price of fairness remains small (1.07 for DC and
1.13 for Maximin).

In Figure 1 (bottom), we examine 20 synthetic networks used by Wilder et al. [26]
to model an obesity prevention intervention in the Antelope Valley region of California.
Each node in the network has a geographic region, ethnicity, age, and gender, and nodes
are more likely to connect to those with similar attributes. Each network has 500 nodes
and we set k = 25. Overall the results are similar to the homeless youth networks.
One exception is the high price of fairness that maximin suffers with respect to the
“region” attribute (over 1.4), but the other PoF values are relatively low (below 1.2).
We also observe that greedy obtains the (slightly) best maximin performance for gender,
likely because the network is sufficiently well-mixed across genders that fairness is
not a significant concern (as confirmed by the extremely low DC violations). Absent
true fairness concerns, greedy may perform slightly better since it solves a simpler
optimization problem. However, in the last figure, we examine overlapping groups given
by region and ethnicity and observe that greedy actually obtains zero maximin value,
indicating that there is one group that it never reached across any run.

6 Conclusions

In this paper, we examine the problem of selecting key figures in a population to ensure
the fair spread of vital information across all groups. This problem modifies the classic
influence maximization problem with additional fairness provisions based on legal and
game theoretic concepts. We examine two methods for determining these provisions,
and show that the “Price of Fairness” for these provisions can be unbounded. We pro-
pose an improved algorithm for multiobjective maximization to examine this problem
on real world data sets. We show that standard influence maximization techniques of-
ten neglect smaller groups, and a diversity constraint based algorithm can ensure these
groups receive a fair allocation of resources at relatively little cost. As automated tech-
niques become increasingly prevalent in society and governance, our technique will
help ensure that small and marginalized groups are fairly treated.
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